If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-18y+17=0
a = 4; b = -18; c = +17;
Δ = b2-4ac
Δ = -182-4·4·17
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{13}}{2*4}=\frac{18-2\sqrt{13}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{13}}{2*4}=\frac{18+2\sqrt{13}}{8} $
| 21/4=x-141/2 | | 4(x/3+2)-8=12 | | -3(5t-5)+7t=5t-7 | | 2^x/18=0.2 | | -4(5t-4)+9t=6t-3 | | 5x-15=115 | | X2-x+1=0 | | 7=-26x | | x²-x+1=0 | | x/5=8.4 | | -2(x-2)^2=-8 | | 4=132-28x | | 0.1^x=1.5 | | -16t^+151t=88 | | 6x+24-6=-42 | | 1/4(8x+28)-9=-1/2(10x-8) | | X2-4x-9=0 | | X2+4x-9=0 | | X^2+9x+11=x-5 | | x+0.24x=44 | | 7k+3.4=k+7 | | 9x+4.6=21 | | 18=9(w-8) | | X2+4x+9=0 | | -15=2w-1 | | 57=9-6y | | -10x-6=4x+11 | | X=2(x-4)132-28x | | 3x^2+24x+48=-27 | | 3x^2x+3=8 | | 0.5x+4=x-3 | | F(5)=7x+4 |